Jak wykorzystać sztuczną inteligencję w biznesie / Praktyczny przewodnik

Ostatnie miesiące to eksplozja narzędzi i systemów opartych o sztuczną inteligencję. Coraz więcej mówi się o wykorzystaniu AI (Artificial Intelligence) w biznesie, ale powszechna narracja sugeruje, że sztuczna inteligencja to jakaś magia, która sama rozwiązuje wszystkie problemy, albo sposób na błyskawiczne generowanie fajnych obrazków. Managerowie i właściciele firm mają prawo poczuć się zagubieni.  

Jeśli i Ty czujesz się podobnie, przychodzimy z pomocą! Wyjaśnimy Ci, jak w praktyce przeprowadzić w firmie projekt wykorzystujący narzędzia sztucznej inteligencji i data science.

Sztuczna inteligencja a data science – jak są ze sobą związane?

Data science i sztuczna inteligencja są ze sobą mocno powiązane i wzajemnie się uzupełniają.

  • Data science polega na analizowaniu dużych zbiorów danych, aby uzyskać z nich wartościowe i przydatne informacje, które można przełożyć na konkretne decyzje biznesowe.
  • Z kolei sztuczna inteligencja koncentruje się na tworzeniu systemów, które mają zdolność myślenia i uczenia się w sposób podobny do ludzkiego mózgu.

Data science korzysta z zaawansowanej matematyki oraz narzędzi sztucznej inteligencji, np. uczenia maszynowego czy przetwarzania języka naturalnego, aby analizować duże ilości danych. Dzięki AI data scientist może dokładniej analizować dane i wykrywać wzorce, które można przełożyć na realne biznesowe korzyści, na przykład:

  • Lepiej zrozumieć zachowania klientów i rekomendować im bardziej dopasowane produkty
  • Prognozować wielkość sprzedaży
  • Lepiej rozumieć trendy rynkowe
  • Wyłapywać anomalie i potencjalne problemy
  • Optymalizować procesy biznesowe
  • Przewidywać, którzy klienci mogą odejść lub przejść do konkurencji

Dlaczego projekty wykorzystujące sztuczną inteligencję w biznesie są inne?

Być może jesteś już na ścieżce cyfrowej transformacji w Twojej firmie i masz za sobą wdrożenia różnych rozwiązań IT. Może są to platformy e-commerce, systemy do zarządzania produktami czy budowa infrastruktury chmurowej.

Teraz chcesz zrobić kolejny krok i wykorzystać zalety sztucznej inteligencji i data science do wzrostu Twojej firmy. Szukasz więc ekspertów, którzy wyciągną z Twoich danych ciekawe informacje i pomogą przełożyć je na realne biznesowe korzyści, np. wzrost sprzedaży.

I tutaj właśnie spotykamy się z najczęstszym błędem w podejściu do projektów data science, które traktowane są jak każde inne wdrożenie systemu IT w firmie.

  • Projekty data science i AI przypominają projekt naukowy – stawia się hipotezy, następnie przeprowadza eksperymenty (na początku na mniejszej próbie, tzw. Proof of Concept), aby te hipotezy zweryfikować. Nie można mieć 100% pewności, że hipoteza, np. wzrost sprzedaży o 5-10%, się potwierdzi. Być może będzie to 3%, może 15%, a może 0. Są oczywiście sposoby, aby zmniejszyć ryzyko porażki, na przykład zbierać dane w odpowiedni sposób, o czym powiemy za chwilę.
  • Praca odbywa się w podejściu iteracyjnym – jeśli model nie spełnia założonych celów, jest udoskonalany i testowane są inne warianty. Ponownie, człon „science” w „data science” to nie przypadek.
  • Korzyści finansowe takiego projektu są odroczone w czasie, ponieważ pełna weryfikacja modelu odbywa się po jego wdrożeniu. Aby wiedzieć, czy model data science zwiększy sprzedaż, ta sprzedaż po prostu musi się wydarzyć.

Jak przygotować się do wykorzystania sztucznej inteligencji i data science w firmie?

Aby zacząć projekt data science w Twojej firmie, potrzebne są (zaskoczenie!) DANE. Brzmi to jak oczywista oczywistość, ale tak właśnie jest i co więcej, nie mogą to być byle jakie dane.

Strategia danych

Zanim przejdziesz do wdrażania zaawansowanych modeli machine learning, musisz stać się organizacją data centric, tzn. taką, gdzie wszyscy członkowie rozumieją potrzebę zbierania odpowiednich danych. Koniecznie odpowiedz też sobie na pytania „jakie dane?” i „w jakim celu?” chcesz zbierać.

Zbieranie danych

Jeśli masz już strategię, zacznij zbierać dane. Najlepiej sprawdzą się tutaj tzw. data lake, czyli miejsce do przechowywania dużej ilości różnorodnych danych, pozwalające na szybkie i elastyczne ich przetwarzanie. Innym rozwiązaniem może być hurtownia danych, czyli centralne miejsce przechowywania danych biznesowych, które zostały wstępnie przetworzone i ustrukturyzowane w celu ułatwienia ich wykorzystania przez organizację.

Proste analizy

Następnie możesz zacząć przeprowadzać proste analizy, za pomocą narzędzi takich jak na przykład PowerBI.

Na te wszystkie działania potrzebny jest jednak czas. Jeśli więc myślisz o korzystaniu z Twoich danych długofalowo do budowania przewagi konkurencyjnej i zwiększania przychodów, warto już teraz zacząć przygotowania, aby przejść do czwartego etapu, czyli praktycznej implementacji sztucznej inteligencji i data science do Twojej firmy. Jak za chwilę zobaczysz, takie podejście bardzo się opłaca.

Jak wygląda projekt AI & data science w biznesie krok po kroku

Jeśli masz już opracowaną strategię oraz odpowiednio zebrane dane, które już w jakiś sposób analizujesz, możesz przejść do projektów data science z prawdziwego zdarzenia, czyli zacząć eksplorację danych i budowę modeli. Przejdziemy przez ten proces razem, aby pomóc Ci lepiej zrozumieć, co się dzieje na każdym etapie. 

Cross Industry Standard Process for Data Mining

1 / Analiza biznesowa

W pierwszym kroku biznes oraz specjaliści data prowadzą dialog, aby zrozumieć potrzebę biznesową oraz znaleźć rozwiązanie wykorzystujące narzędzia sztucznej inteligencji i data science. Twoją potrzebą może być na przykład zwiększenie sprzedaży w sklepie online i narzędziem, które pozwoli to osiągnąć, będą systemy rekomendacji lub dynamicznie ustalane ceny.

W tym kroku należy też sprawdzić, czy nie ma ograniczeń prawnych lub technicznych, które mogą zagrozić projektowi. Przykładowo: do poprawnego funkcjonowania modelu możesz potrzebować danych w czasie rzeczywistym, ale z różnych przyczyn nie możesz ich mieć. Tego typu różne trudności wyłapiesz już na starcie projektu.

2 / Zrozumienie danych

W drugim kroku data scientist musi przyjrzeć się danym, jakie posiada firma. Jeśli celem jest wspomniane wcześniej zwiększenie sprzedaży za pomocą systemów rekomendacji, to konieczne będzie przyjrzenie się np. historii sprzedaży.


Data scientist sprawdza zatem, które dane mogą wchodzić do modelu, jaka jest ich jakość, czy są kompletne, spójne. W przypadku analizy historii sprzedaży może się okazać, że należy pominąć okres pandemii, ponieważ wtedy zachowania zakupowe klientów odbiegały od normy i wykorzystanie tych danych dzisiaj mogłoby przekłamać model.

3 / Przygotowanie danych

Trzeci krok projektu data science to przygotowanie danych dla algorytmu. Dane są na tym etapie sprawdzane, czyszczone z luk, błędów oraz są transformowane do właściwej formy. Na przykład jeśli data scientist ma zbudować model prognozowania sprzedaży, może to zrobić w przedziale dziennym, tygodniowym lub miesięcznym. I tak też należy przygotować dane dla algorytmu, aby osiągnąć zamierzone rezultaty.

4 / Modelowanie danych

Na tym etapie data scientist rozwija właściwy model, który będzie podstawą wdrażanego rozwiązania sztucznej inteligencji i data science w biznesie, np. systemu rekomendacji czy systemu do prognozowania sprzedaży. Jest to etap mocno techniczny, w dużym stopniu poświęcony użyciu technik data mining (eksploracja danych).

5 / Ewaluacja modelu

Na tym etapie model jest testowany pod kątem założonych celów biznesowych, na przykład wzrostu sprzedaży o 5-10%. Jeśli wybranym rozwiązaniem do realizacji tego celu był silnik rekomendacji, to w tym momencie jest on uruchamiany na stronie internetowej dla kilku procent klientów. W ten sposób można zweryfikować działanie modelu na mniejszej próbce.

Jeśli model nie spełnia oczekiwań i wymaga poprawy, proces zaczyna się od nowa, czyli należy ponownie przyjrzeć się założeniom biznesowym i danym, aby model dopracować. Weryfikacja może odbywać się również z udziałem biznesu i ekspertów wewnętrznych, którzy oceniają działanie modelu. Tak jak pisaliśmy wcześniej, data science to proces naukowy – weryfikacja hipotez i szukanie najlepszego rozwiązania.

Krok piąty to także moment, w którym uporządkowane i przemyślane zbieranie danych w data lake lub hurtowniach danych przynosi swoje owoce. Obróbka danych i weryfikacja hipotez jest o wiele szybsza i ryzyko porażki jest mniejsze, gdy specjaliści data mają dostęp do jednego scentralizowanego źródła danych. Wówczas budowanie i ewaluacja modelu mogą zająć zaledwie kilka tygodni. W efekcie kolejne wersje modelu testowane są szybciej.

6/ Pełne wdrożenie

W ostatnim kroku, gdy biznes jest zadowolony z rezultatów i ewaluacja skuteczności modelu na mniejszej próbce przebiegła pomyślnie, tworzony jest system informatyczny, który staje się częścią przedsiębiorstwa. Przykładowo silnik rekomendacji zostaje zaimplementowany dla wszystkich klientów i zaczyna dziać się magia. 😉Jakiś czas po wdrożeniu można w pełni ocenić skuteczność działania modelu i systemu jako całości. Jak wspominaliśmy, jeśli celem było zwiększenie sprzedaży, to ta sprzedaż musi się wydarzyć, aby policzyć, czy faktycznie wzrosła o założoną wartość.

Wdrożyłeś sztuczną inteligencję w Twojej firmie. Co dalej?

Poza tym, że masz duży powód do radości, musisz wiedzieć, co robić dalej. 😉 Od czasu do czasu Twój algorytm będzie wymagał okresowych przeglądów pod kątem KPI oraz metryk biznesowych. Konieczne mogą być pewne modyfikacje w samym modelu. Jak już wiesz, rozwiązania oparte o sztuczną inteligencję i data science wymagają dobrej jakości danych.

A dane się zmieniają. Być może Twoja firma zrobiła ekspansję za granicę, gdzie rynek wygląda zupełnie inaczej? Konieczne jest wówczas uaktualnienie modelu o nowe informacje.

Magia AI & data science to tak naprawdę nauka

Droga cyfrowej transformacji musi dzisiaj prowadzić do mądrego i strategicznego wykorzystania danych. W najbliższym czasie przewagę konkurencyjną będą budować ci, którzy potrafią wykorzystać dane do wzrostu swojego biznesu. Sposobem na osiągnięcie tych celów są projekty korzystające z rozwiązań data science i sztucznej inteligencji. Warto pamiętać, że nie są to magiczne narzędzia, które implementujemy dwoma kliknięciami. Jest to rezultat naukowego, iteracyjnego procesu – analizy danych, testów, weryfikacji – który prowadzi do mierzalnych biznesowo efektów.

Chcesz dowiedzieć się więcej o projektach data science?

Nasi eksperci
/ Dzielą się wiedzą

23.05.2023

Zaawansowana analiza klienta z zastosowaniem metod data science / machine learning 

AI

Wyobraźmy sobie średniej wielkości supermarket w świecie bez analizy klientów. Każdy wchodzący do sklepu klient pozostaje tajemnicą. Nie wiadomo, jakie są jego oczekiwania, zainteresowania, potrzeby oraz co kupował w przeszłości. Właściciel musi polegać na intuicji i wyczuciu, aby określić, jakie produkty umieścić na półkach, jakie...

16.05.2023

Strategia omnichannel – jak ją wdrożyć w praktyce?  

Integracja systemów

Strategia omnichannel staje się coraz bardziej popularna wśród firm, również z sektora B2B. Korzyści z podejścia wielokanałowego są niezaprzeczalne – zadowoleni klienci i większa sprzedaż. Jak jednak praktyce wdrożyć strategię omnichannel? Co jest jej fundamentem? Jakich narzędzi należy użyć? Na co zwrócić uwagę przy implementacji...

09.05.2023

E-commerce B2B / Personalizacja doświadczeń zakupowych

Personalizacja doświadczeń zakupowych jest jednym z kluczowych czynników wpływających na sukces w e-commerce, zarówno w przypadku B2C, jak i B2B. Coraz więcej firm zdaje sobie sprawę z potencjału personalizacji i jej wpływu na zwiększenie konwersji oraz lojalności klientów. W przypadku transakcji B2B ma to szczególne znaczenie, ponieważ...

Ekspercka wiedza
dla Twojego biznesu

Jak widać, przez lata zdobyliśmy ogromną wiedzę - i uwielbiamy się nią dzielić! Porozmawiajmy o tym, jak możemy Ci pomóc.

Napisz do nas

<dialogue.opened>